Problem 1

For $\alpha \in \mathbb{R}$ and $n \in \mathbb{N}$, we define^{*a*}

$$\binom{\alpha}{n} = \frac{\alpha(\alpha - 1)\dots(\alpha - n + 1)}{n!}$$

In this problem, we will deduce that for |x| < 1,

$$(1) 1+x)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} x^n.$$

1. Show that
$$\sum_{n=0}^{\infty} {\alpha \choose n} x^n$$
 converges if $|x| < 1$ using the ratio test.

- 2. Let $f(x) = \sum_{n=0}^{\infty} {\alpha \choose n} x^n$ for |x| < 1. Show that $(1+x)f'(x) = \alpha f(x)$.
- Suppose f: (-1,1) → ℝ is a differentiable function satisfying (1 + x)f'(x) = αf(x). Show that f(x) = c(1 + x)^α for some constant c.
 Hint: Consider g(x) = f(x)/(1 + x)^α.

4. Conclude (1), i.e. c = 1 in the previous subproblem.

^{*a*}This extends the definition of the binomial $\binom{m}{n}$ for $m \in \mathbb{N}, 0 \leq n \leq m$.

Problem 2

Suppose that $(f_n)_{n \in \mathbb{N}} : [a, b] \to \mathbb{R}$ is a sequence of continuous functions which converges uniformly to f. Show that if $x_n \to x$ where $x_n \in [a, b]$, then $f_n(x_n) \to f(x)$. Is this true if we don't assume the f_n are continuous? Is it true if the convergence is not uniform?

Problem 3

Suppose that $f(x) = \sum_{n=0}^{\infty} a_n x^n$ is an even function. Show that $a_n = 0$ for every odd $n \in \mathbb{N}$. If f is odd instead, show that $a_n = 0$ for every even $n \in \mathbb{N}$.